如何比较两组数据的显著性差异?
2023-12-06 · 百度认证:SPSSAU官方账号,优质教育领域创作者
变量说明:
在确定分析方法前,我们需要了解手中的数据类型,这是最基础也是有必要的,在所有的数据类型中,我们将数据类型分为分类变量也为定类变量和连续变量也称为定量变量,那么什么是定类变量?什么是定量变量?
定类变量通俗的讲数字大小不具有比较意义,比如性别中1代表男,2代表女,仅仅代表类别,在比如下图中,1代表底妆2代表唇妆等等,仅是类别关系。
定量变量通俗的讲数字大小具有比较意义,比如调查青少年身高,1.4m比1.3m高,数字本身具有比较意义,在比如如下图片沙发的价格,数字越大说明越贵,数字越小说明越便宜,数字之间是可以比较的。通过数据类型的说明,本次探讨我们以数据类型的不同进行分类说明,分别是分类和连续变量、连续和连续变量、分类和分类变量。
如果数据是分类变量和连续变量,那么进行分析时,分析方法大体可以分为三类,参数检验、非参数检验以及可视化图形,其中参数检验又包括t检验、方差分析,非参数检验包括MannWhitney统计量、Kruskal-Wallis统计量。以及还可以使用可视化图形进行查看。
如果数据是连续数据和连续变量,那么进行分析时,分析方法大体可以分为四类,相关分析、参数检验、非参数检验以及可视化图形,其中相关分析一般包括皮尔逊(pearson)相关系数以及斯皮尔曼(spearman)相关系数。如果连续变量和连续变量的样本量是相同的,可以考虑使用参数检验中的配对t检验,非参数检验包括配对wilcoxon,可视化图形可以考虑使用散点图。如果数据是分类变量和分类变量,那么进行分析时,分析方法大体可以分为三类,卡方检验、可视化图形,其中卡方检验又包括pearson卡方、fisher卡方、yates校正卡方、cochran-armitage检验、线性趋势卡方,以及还可以使用可视化图形(堆积柱形图、条形图)进行查看。
举例分析
(1)分析流程
想要调查不用性别(男、女)的饮食习惯(米食、面食),针对卡方检验的分类应该使用pearson卡方检验。
从分析结果中看出男性更偏爱吃面食占比为60%,女性更偏爱吃米食约占调查中的80%。从数据来看,不同性别的饮食习惯有差异,模型中的卡方值为16.667,其中p值小于0.05,拒绝原假设,说明模型显著,不同性别的饮食习惯有差别。并且从堆积柱形图中也可以直观查看到男性更爱吃面食,女性更爱吃米食。
首先,分别把这两组数据分别设为x和y,打开SPSS,点击左下角的Variable View选项卡,在Name列那里的第一行输y,第二行输x,返回Data View选项卡,输入对应的数据。
然后,进行数据分析,分别把y和x选进各自的对话框,然后按ok,在输出窗口中看到Coefficients这个表,然后看最右边的那个Sig列,看x对应的Sig值,若这个sig值比你之前所设定的a值大,则认为这两组数不存在显著性差异,若这个sig值比你之前所设定的a值小,则认为这两组数存在显著性差异。
举个例子,如果你预先设定的a=0.05,求得的sig=0.000,则0.000<0.05,故应拒绝原假设(原假设一般为设它们之间无差异),认为这两组数有显著性差异。