数列求和:Sn=1/2^2-1+1/3^2-1+1/4^2-1+.+1/n^2-1 ..急用?
1个回答
展开全部
Sn=1/2^2 - 1 + 1/3^2 - 1 + 1/4^2 - 1 +.+ 1/n^2 - 1
=1/(2 - 1)(2 + 1) + 1/(3 - 1)(3 + 1) + .+ 1/(n - 1)(n + 1)
=1/(1 * 3) + 1/(2 * 4) + .+ 1/(n - 1)(n + 1)
=1/2[1/1 - 1/3 + 1/2 - 1/4 + .+ 1/(n - 1)(n + 1)]
=1/2[1 + 1/2 - 1/n - 1/(n + 1)]
=3/4 - 1/(2n) - 1/(2n + 2),7,因为an=1/2(1/(n-1)-1/(n+1))
所以sn=a1+a2+.....+an
=1/2(1-1/3+1/2-1/4+1/3-1/5+.....+1/(n-1)-1/(n+1))
=1/2(1+1/2-1/n-1/(n+1))
=1/2(3/2-1/n-1/(n+1))
=(3*n*n-n-2)/(4n(n+1)),1,
=1/(2 - 1)(2 + 1) + 1/(3 - 1)(3 + 1) + .+ 1/(n - 1)(n + 1)
=1/(1 * 3) + 1/(2 * 4) + .+ 1/(n - 1)(n + 1)
=1/2[1/1 - 1/3 + 1/2 - 1/4 + .+ 1/(n - 1)(n + 1)]
=1/2[1 + 1/2 - 1/n - 1/(n + 1)]
=3/4 - 1/(2n) - 1/(2n + 2),7,因为an=1/2(1/(n-1)-1/(n+1))
所以sn=a1+a2+.....+an
=1/2(1-1/3+1/2-1/4+1/3-1/5+.....+1/(n-1)-1/(n+1))
=1/2(1+1/2-1/n-1/(n+1))
=1/2(3/2-1/n-1/(n+1))
=(3*n*n-n-2)/(4n(n+1)),1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询