如图在平面直角坐标系内,已知点A(0,6)、点B(8.0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O
如图在平面直角坐标系内,已知点A(0,6)、点B(8.0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位...
如图在平面直角坐标系内,已知点A(0,6)、点B(8.0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒、(1)求直线AB的解析式(2)当t为何值时,三角形APQ与三角形AOB相似?并求出此时点P与点Q的坐标(3)当t为何值时,三角形APQ的面积为24/5个平方单位
展开
2个回答
展开全部
(1) 设直线AB的解析式为y=kx+b
由题意,得 解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6, BO=8 得AB=10
所以AP=t ,AQ=10-2t
1) 当∠APQ=∠AOB时,△APQ∽△AOB.
所以 = 解得 t=(秒)
2) 当∠AQP=∠AOB时,△AQP∽△AOB.
所以 = 解得 t=(秒)
(3)过点Q作QE垂直AO于点E.
在Rt△AOB中,Sin∠BAO==
在Rt△AEQ中,QE=AQ・Sin∠BAO=(10-2t)・=8 -t 2分S△APQ=AP・QE=t・(8-t)
=-+4t= 解得t=2(秒)或t=3(秒).
由题意,得 解得
所以,直线AB的解析式为y=-x+6.
(2)由AO=6, BO=8 得AB=10
所以AP=t ,AQ=10-2t
1) 当∠APQ=∠AOB时,△APQ∽△AOB.
所以 = 解得 t=(秒)
2) 当∠AQP=∠AOB时,△AQP∽△AOB.
所以 = 解得 t=(秒)
(3)过点Q作QE垂直AO于点E.
在Rt△AOB中,Sin∠BAO==
在Rt△AEQ中,QE=AQ・Sin∠BAO=(10-2t)・=8 -t 2分S△APQ=AP・QE=t・(8-t)
=-+4t= 解得t=2(秒)或t=3(秒).
参考资料: http://czsx.cooco.net.cn/testdetail/20990/
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询