如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上(1)求证△A
1个回答
展开全部
1)证明:
由题意可知:∠BFE=∠C=90°
∴∠DFE+∠BFA=90°
又∠DFE+∠FED=90°
∴∠BFA=∠FED
又∠D=∠B=90°
∴△ABF∽△DFE
2)解:
∵sin∠DFE=DE/EF=1/3
设DE=a,则EF=3a
∴DF=√EF²-DE²=2√2 a
∴cos∠DFE=DF/EF=2√2/3
由题意可知:CE=EF=3a
∴CD=AB=4a
又由△ABF∽△DFE,可知:
∠ABF=∠DFE
∴cos∠ABF=AB/BF=2√2/3
∴BF=AB÷(2√2/3)
=3√2 a
∴tan∠EBC=tan∠FBE
=EF/BF
=3a/3√2 a
=√2 /2
由题意可知:∠BFE=∠C=90°
∴∠DFE+∠BFA=90°
又∠DFE+∠FED=90°
∴∠BFA=∠FED
又∠D=∠B=90°
∴△ABF∽△DFE
2)解:
∵sin∠DFE=DE/EF=1/3
设DE=a,则EF=3a
∴DF=√EF²-DE²=2√2 a
∴cos∠DFE=DF/EF=2√2/3
由题意可知:CE=EF=3a
∴CD=AB=4a
又由△ABF∽△DFE,可知:
∠ABF=∠DFE
∴cos∠ABF=AB/BF=2√2/3
∴BF=AB÷(2√2/3)
=3√2 a
∴tan∠EBC=tan∠FBE
=EF/BF
=3a/3√2 a
=√2 /2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询