几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连
几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=...
几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG,延长AF、AG,与直线BC相交.求证:FG=12(AB+BC+AC).(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图1),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.
展开
1个回答
展开全部
(1)如图1,∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
在△ABF和△MBF中,
∵
,
∴△ABF≌△MBF(ASA)
∴MB=AB
∴AF=MF,
同理:CN=AC,AG=NG,
∴FG是△AMN的中位线
∴FG=
MN,
=
(MB+BC+CN),
=
(AB+BC+AC).
(2)图2中,FG=
(AB+AC-BC)
理由如下:如图2,
延长AG、AF,与直线BC相交于M、N,
∵由(1)中证明过程类似证△ABF≌△NBF,
∴NB=AB,AF=NF,
同理CM=AC,AG=MG
∴FG=
MN,
∴MN=2FG,
∴BC=BN+CM-MN=AB+AC-2FG,
∴FG=
(AB+AC-BC),
答:线段FG与△ABC三边的数量关系是FG=
(AB+AC-BC).
∴∠BAF=∠BMF,
在△ABF和△MBF中,
∵
|
∴△ABF≌△MBF(ASA)
∴MB=AB
∴AF=MF,
同理:CN=AC,AG=NG,
∴FG是△AMN的中位线
∴FG=
1 |
2 |
=
1 |
2 |
=
1 |
2 |
(2)图2中,FG=
1 |
2 |
理由如下:如图2,
延长AG、AF,与直线BC相交于M、N,
∵由(1)中证明过程类似证△ABF≌△NBF,
∴NB=AB,AF=NF,
同理CM=AC,AG=MG
∴FG=
1 |
2 |
∴MN=2FG,
∴BC=BN+CM-MN=AB+AC-2FG,
∴FG=
1 |
2 |
答:线段FG与△ABC三边的数量关系是FG=
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询