设f(x)=2?x?a(x≤0)f(x?1)(x>0),若f(x)=x有且仅有两个实数解,则实数a的取值范围是(  )A.(-∞

设f(x)=2?x?a(x≤0)f(x?1)(x>0),若f(x)=x有且仅有两个实数解,则实数a的取值范围是()A.(-∞,2)B.[1,2)C.[1,+∞)D.(-∞... 设f(x)=2?x?a(x≤0)f(x?1)(x>0),若f(x)=x有且仅有两个实数解,则实数a的取值范围是(  )A.(-∞,2)B.[1,2)C.[1,+∞)D.(-∞,1] 展开
 我来答
Lonely217wy
推荐于2016-07-12 · TA获得超过775个赞
知道答主
回答量:123
采纳率:0%
帮助的人:151万
展开全部
解:构造函数g(x)=f(x)+a=2-x
作出函数g(x)=
2?x,x≤0
g(x?1),x>0
的图象
若f(x)=x有且仅有两个实数解可转化为g(x)与y=x+a的图象有两个交点
结合图象可知,当a≥2时函数有1个交点;当a<2时函数有2个交点
故选:A
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式