已知数列{a n }的前n项和为s n ,满足S n =2a n -2n(n∈N + ),(1)求数列{a n }的通项公式a n ;(2
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足bn=log2(an+2),Tn为数列{bn...
已知数列{a n }的前n项和为s n ,满足S n =2a n -2n(n∈N + ),(1)求数列{a n }的通项公式a n ;(2)若数列b n 满足b n =log 2 (a n +2),T n 为数列{ b n a n +2 }的前n项和,求T n (3)(只理科作)接(2)中的T n ,求证:T n ≥ 1 2 .
展开
小骗子106
2015-01-22
·
TA获得超过542个赞
关注
(1)当n∈N + 时,S n =2a n -2n, 则当n≥2,n∈N + 时,S n-1 =2a n-1 -2(n-1) ①-②,a n =2a n -2a n-1 -2,a n =2a n-1 +2 ∴a n +2=2(a n-1 +2), ∴ =2 ,n=1时 S 1 =2a 1 -2,∴a 1 =2 ∴{a n +2}是a 1 +2=4为首项2为公比的等比数列, ∴a n +2=4?2 n-1 =2 n+1 , ∴a n =2 n+1 -2 (2)证明b n =log 2 (a n +2)=log 2 2 n+1 =n+1. ∴ = , 则 T n = + +…+ , ∴ T n = + +…+ + ④ ③-④, T n = + + …+ - = + - = + - - = - ∴ T n = - . (3)n≥2时 T n - T n-1 =- + = >0 , ∴{T n }为递增数列 ∴ T n 的最小值是 T 1 = ∴ T n ≥ |
收起
为你推荐: