三角形ABC是等腰直角三角形,角A=90度,点P、Q分别是AB、AC上的一点,且满足BP=AQ,D是BC的中点

求证:三角形PDQ是等角三角形三角形PDQ是等腰直角三角形P运动到什么位置时,APDQ是正方形... 求证:三角形PDQ是等角三角形
三角形PDQ是等腰直角三角形
P运动到什么位置时,APDQ是正方形
展开
xuer8052
推荐于2016-12-02 · TA获得超过264个赞
知道小有建树答主
回答量:148
采纳率:50%
帮助的人:88.7万
展开全部
1)证明:连接AD ,因为三角形ABC是等腰直角三角形,所以∠B=∠C=45°,点D是斜边BC的中点(角平分线),所以∠DAC=1/2*90°=45°,所以∠B=∠DAC=∠C=45°,AD=1/2*BC=BD,AD垂直DC,又因为BP=AQ,所以△DBP全等于△DAQ(角相等并且这个角的两边相等),所以DP=DQ,∠BDP=∠ADQ(全等三角形的性质),∠ADC是直角,所以∠BDP+∠PDA=∠ADP+∠PDA=90°所以三角形PDQ是等腰三角形!
2)要满足APDQ是正方形,则DP=PA=AQ=DQ,已知BP=AQ,所以BP=PA即P运动到BA中点的时候,APDQ是正方形,此时四边相等,四脚都是90°
眼镜镜8I
2010-11-07 · TA获得超过769个赞
知道小有建树答主
回答量:216
采纳率:0%
帮助的人:163万
展开全部
证明:连接AD ,因为三角形ABC是等腰直角三角形,所以∠B=∠C=45°,点D是斜边BC的中点,所以∠DAC=1/2*90°=45°,所以∠B=∠DAC,AD=1/2*BC=BD,又因为BP=AQ,所以△DBP全等于△DAQ,所以DP=DQ,所以三角形PDQ是等腰三角形!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yingdetao
2012-05-20 · TA获得超过1206个赞
知道答主
回答量:143
采纳率:100%
帮助的人:15.9万
展开全部
1、证明:
连结A、D,则:
AD=BD=BC,∠DAC=45º, ∠PDB+∠ADP=90º
∵AD=BD, ∠DAQ=∠DBP, AQ=BP
∴△DAQ∽△DBP
∴DQ=DP, ∠QDA=∠PDB
∴∠QDP=∠QDA+∠ADP=∠PDB+∠ADP=90º
∴△PDQ是等腰直角三角形
2、点P是AB的中点。因为:
四边形APDQ=△PDQ+△QAP
而△PDQ是等腰直角三角形
要使得四边形为正方形则△QAP为等腰直角三角形
则AQ=PA=PB
所以P为AB中点


2、点P是AB的中点。证明如下:
假设四边形APDQ是正方形,则 PA=AQ=QD=DP,,∠A=90º
∵BP=AQ
∴BP=PA
即点P是AB的中点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1219569872
2012-04-24
知道答主
回答量:20
采纳率:0%
帮助的人:4.4万
展开全部
1、证明:
连结A、D,则:
AD=BD=BC,∠DAC=45º, ∠PDB+∠ADP=90º
∵AD=BD, ∠DAQ=∠DBP, AQ=BP
∴△DAQ∽△DBP
∴DQ=DP, ∠QDA=∠PDB
∴∠QDP=∠QDA+∠ADP=∠PDB+∠ADP=90º
∴△PDQ是等腰直角三角形
2、点P是AB的中点。因为:
四边形APDQ=△PDQ+△QAP
而△PDQ是等腰直角三角形
要使得四边形为正方形则△QAP为等腰直角三角形
则AQ=PA=PB
所以P为AB中点


2、点P是AB的中点。证明如下:
假设四边形APDQ是正方形,则 PA=AQ=QD=DP,,∠A=90º
∵BP=AQ
∴BP=PA
即点P是AB的中点
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式