计算二重积分∫∫D根号(4-x²-y²)dxdy,其中D为以X的平方+Y的平方小于等于4的区域
2个回答
展开全部
x = rcosθ,y = rsinθ
x² + y² = 2x
(rcosθ)² + (rsinθ)² = 2rcosθ
r²(cos²θ + sin²θ) = 2rcosθ
r = 2cosθ
∫∫_D √(4 - x² - y²) dxdy
= ∫(0,π/2) ∫(0,2cosθ) √(4 - r²) * r drdθ
= (- 1/3)∫(0,π/2) (4 - r²)^(3/2) |(0,2cosθ) dθ
= (- 1/3)∫(0,π/2) [(4 - 4cos²θ)^(3/2) - (4 - 0)^(3/2)] dθ
= (- 8/3)∫(0,π/2) |sinθ|³ dθ + (8/3)∫(0,π/2) dθ
= (- 8/3)∫(0,π/2) sin³θ dθ + (8/3)(π/2 - 0)
= (- 8/3)∫(0,π/2) sin²θ d(- cosθ) + 4π/3
= (8/3)∫(0,π/2) (1 - cos²θ) d(cosθ) + 4π/3
= (8/3)[cosθ - (1/3)cos³θ] |(0,π/2) + 4π/3
= (8/3)(0 - 2/3) + 4π/3
= (4/9)(3π - 4) ≈ 2.41101
x² + y² = 2x
(rcosθ)² + (rsinθ)² = 2rcosθ
r²(cos²θ + sin²θ) = 2rcosθ
r = 2cosθ
∫∫_D √(4 - x² - y²) dxdy
= ∫(0,π/2) ∫(0,2cosθ) √(4 - r²) * r drdθ
= (- 1/3)∫(0,π/2) (4 - r²)^(3/2) |(0,2cosθ) dθ
= (- 1/3)∫(0,π/2) [(4 - 4cos²θ)^(3/2) - (4 - 0)^(3/2)] dθ
= (- 8/3)∫(0,π/2) |sinθ|³ dθ + (8/3)∫(0,π/2) dθ
= (- 8/3)∫(0,π/2) sin³θ dθ + (8/3)(π/2 - 0)
= (- 8/3)∫(0,π/2) sin²θ d(- cosθ) + 4π/3
= (8/3)∫(0,π/2) (1 - cos²θ) d(cosθ) + 4π/3
= (8/3)[cosθ - (1/3)cos³θ] |(0,π/2) + 4π/3
= (8/3)(0 - 2/3) + 4π/3
= (4/9)(3π - 4) ≈ 2.41101
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询