高等数学,求函数导数
1个回答
展开全部
记 f(x) = (sinx)^√x, 则 lnf = √xlnsinx,
f'/f = sinx/(2√x) + √xcosx/sinx = (sinx+2xcotx)/(2√x)
f' = f(sinx+2xcotx)/(2√x) = (sinx+2xcotx)[(sinx)^√x]/(2√x) ;
(arctan√x)' = [1/(2√x)]/(1+x) = 1/[2(1+x)√x)].
y' = (sinx+2xcotx)[(sinx)^√x]/(2√x) + 1/[2(1+x)√x)]
f'/f = sinx/(2√x) + √xcosx/sinx = (sinx+2xcotx)/(2√x)
f' = f(sinx+2xcotx)/(2√x) = (sinx+2xcotx)[(sinx)^√x]/(2√x) ;
(arctan√x)' = [1/(2√x)]/(1+x) = 1/[2(1+x)√x)].
y' = (sinx+2xcotx)[(sinx)^√x]/(2√x) + 1/[2(1+x)√x)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询