急,问道数学题

利用基本不等式证明不等式1题:已知a>0,b>0且a+b=1,求证1/a+1/b>=42题:已知a,b,c属于(0,+无穷)且a+b+c=1,求证(1/a-1)(1/b-... 利用基本不等式证明不等式
1题:已知a>0,b>0且a+b=1,求证1/a+1/b>=4
2题:已知a,b,c属于(0,+无穷)且a+b+c=1,求证(1/a-1)(1/b-1)(1/c-1)>=8
要详细过程和解释,谢谢了.
展开
weilei0804
2010-11-09 · TA获得超过1299个赞
知道小有建树答主
回答量:570
采纳率:100%
帮助的人:296万
展开全部
1,1=a+b≥2√(ab),所以ab最大值为1/4
1/a+1/b≥2√(1/ab)=4(大于它的最大值)

2,a+b+c=1,a,b,c,属于正实数,求证(1/a-1)(1/b-1)(1/c-1)≥8
证:已知a+b+c=1,a,b,c,属于正实数,
∵(1/a-1)
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0
b+c≥2√(bc)
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理
(1/b-1)≥2√(ac)/b
(1/c-1)≥2√(ab)/c

故(1/a-1)*(1/b-1)*(1/c-1)≥[2√(bc)/a]*[2√(ac)/b]*[2√(ab)/c]
=8 √[(a^2)*(b^2)8(c^2)]/(abc)
=8

∴(1/a-1)*(1/b-1)*(1/c-1)≥8

参考资料: http://zhidao.baidu.com/question/90066844.html?si=1

yrh429
2010-11-11 · TA获得超过699个赞
知道小有建树答主
回答量:113
采纳率:0%
帮助的人:0
展开全部
1、a+b=1,a+b>=2根号ab
ab<=1/4,1/ab>=4
1/a+1/b=(a+b)/ab=1/ab>=4
2、(1/a-1)(1/b-1)(1/c-1)=[(1-a)/a][(1-b)/b][(1-c)/c]
=(1-a)(1-b)(1-c)/abc
=(b+c)(a+c)(a+b)/abc
>=2√bc*2√ac*2√ab/abc
=8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
工旧战01
2010-11-11
知道答主
回答量:6
采纳率:0%
帮助的人:5445
展开全部
1、a+b=1,a+b>=2倍的根号ab
ab<=1/4,1/ab>=4
1/a+1/b=(a+b)/ab=1/ab>=4,所以得证。
2、a+b+c=1,a,b,c,属于正实数,求证(1/a-1)(1/b-1)(1/c-1)≥8
证:已知a+b+c=1,a,b,c,属于正实数,
∵(1/a-1)
=(1-a)/a
=(a+b+c-a)/a
=(b+c)/a
又(√b-√c)^2≥0
b+c≥2√(bc)
∴(1/a-1)=(b+c)/a≥2√(bc)/a
同理
(1/b-1)≥2√(ac)/b
(1/c-1)≥2√(ab)/c

故(1/a-1)(1/b-1)(1/c-1)≥[2√(bc)/a]*[2√(ac)/b][2√(ab)/c]
=8 √[(a^2)*(b^2)8(c^2)]/(abc)
=8

∴(1/a-1)*(1/b-1)*(1/c-1)≥8
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天蓬副元帅猪七戒
2010-11-09 · TA获得超过177个赞
知道答主
回答量:86
采纳率:0%
帮助的人:56万
展开全部
因为1=a+b 所以1/a+1/b=(a+b)/a+(a+b)/a=1+b/a+1+a/b=2+b/a+a/b
而b/a+a/b>=2*根号下b/a与a/b的积 所以得证!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式