∫√x/1+√xdx
1个回答
展开全部
答案:x - 2√x + 2ln|√x + 1| + C
过程:
设y = √x => x = y²,dx = 2y dy
∫ √x/(1 + √x) dx
= ∫ y/(1 + y) • (2y dy)
= 2∫ [(y² - 1) + 1]/(1 + y) dy
= 2∫ (y - 1) dy + 2∫ dy/(y + 1)
= 2(y²/2 - y) + 2ln|y + 1| + C
= x - 2√x + 2ln|√x + 1| + C
过程:
设y = √x => x = y²,dx = 2y dy
∫ √x/(1 + √x) dx
= ∫ y/(1 + y) • (2y dy)
= 2∫ [(y² - 1) + 1]/(1 + y) dy
= 2∫ (y - 1) dy + 2∫ dy/(y + 1)
= 2(y²/2 - y) + 2ln|y + 1| + C
= x - 2√x + 2ln|√x + 1| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询