1个回答
展开全部
x²+y²≤2x+2y
(x-1)²+(y-1)²≤2
化成极坐标x=1+ρcosθ,y=1+ρsinθ,ρ∈[0,√2],θ∈[0,2π] (极点在(1,1)处)
∫∫D (x²+xy+y²)dxdy
=∫(0,2π) dθ∫(0,√2) (3+3ρcosθ+3ρsinθ+ρ²+1/2 ρ²sin2θ)ρdρ
=∫(0,2π)dθ ∫(0,√2) (3+ρ²)ρdρ
=2π(3/2 ρ²+1/4 ρ^4)|(0,√2)
=2π(3+1/4×4)
=8π
(x-1)²+(y-1)²≤2
化成极坐标x=1+ρcosθ,y=1+ρsinθ,ρ∈[0,√2],θ∈[0,2π] (极点在(1,1)处)
∫∫D (x²+xy+y²)dxdy
=∫(0,2π) dθ∫(0,√2) (3+3ρcosθ+3ρsinθ+ρ²+1/2 ρ²sin2θ)ρdρ
=∫(0,2π)dθ ∫(0,√2) (3+ρ²)ρdρ
=2π(3/2 ρ²+1/4 ρ^4)|(0,√2)
=2π(3+1/4×4)
=8π
追问
为什么不能直接代x=1+√2cosθ和y=1+√2sinθ
追答
积分区域是整个圆区域,而不是只是边界
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询