积分区域是x²+y²≤2x+2y,求二重积分x²+xy+y²,用极坐标推广的方法怎么做呢?
1个回答
展开全部
x²+y²≤2x+2y , 即 (x-1)^2 + (y-1)^2 ≤ 2
取广义极坐标 x-1 = rcost, y-1 = rsint,则
I = ∫∫<D>(x^2+xy+y^2)dxdy
= ∫<0, 2π>dt∫<0, √2>[(1+rcost)^2+(1+rcost)(1+rsint)+(1+rsint)^2]rdr
= ∫<0, 2π>dt∫<0, √2>[3+3r(cost+sint)+r^2(1+sintcost)]rdr
= ∫<0, 2π>dt [(3/2)r^2+r^3(cost+sint)+(1/4)r^4(1+sintcost)]<0, √2>
= ∫<0, 2π>[4+2√2(cost+sint)+sin2t]dt
= [4t+2√2(sint-cost)-(1/2)cos2t]<0, 2π> = 8π
取广义极坐标 x-1 = rcost, y-1 = rsint,则
I = ∫∫<D>(x^2+xy+y^2)dxdy
= ∫<0, 2π>dt∫<0, √2>[(1+rcost)^2+(1+rcost)(1+rsint)+(1+rsint)^2]rdr
= ∫<0, 2π>dt∫<0, √2>[3+3r(cost+sint)+r^2(1+sintcost)]rdr
= ∫<0, 2π>dt [(3/2)r^2+r^3(cost+sint)+(1/4)r^4(1+sintcost)]<0, √2>
= ∫<0, 2π>[4+2√2(cost+sint)+sin2t]dt
= [4t+2√2(sint-cost)-(1/2)cos2t]<0, 2π> = 8π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询