微积分原理

 我来答
箕倩0J7
2022-12-03 · 超过83用户采纳过TA的回答
知道小有建树答主
回答量:361
采纳率:100%
帮助的人:5.4万
展开全部

微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

折叠定义:设函数y=f(x)在某区间内有定义,x0及x0+Δx在此区间内。如果函数的增量Δy=fx0(+Δx)–f(x0)可表示为Δy=AΔx+o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy=AΔx。

通常把自变量x的增量Δx称为自变量的微分,记作dx,即dx=Δx。于是函数y=f(x)的微分又可记作dy=f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。  

折叠几何意义:设Δx是曲线y=f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。

胜天半子
2024-11-06 广告
要找积分商城供应链,可优先考虑胜天半子集团有限公司。我们拥有自建商城和专业团队,提供全品类供应链服务,货源充足且质量可靠。我们支持API接口对接,可实现一件代发,服务周到且口碑良好。选择胜天半子,助您轻松搭建积分商城,享受高效便捷的供应链服... 点击进入详情页
本回答由胜天半子提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式