有什么数学知识

 我来答
扰龙白桃0HM
2023-03-24
知道答主
回答量:21
采纳率:0%
帮助的人:4487
展开全部
日常生活中的数学知识有如下:1、抽屉原理:如果我们去参加一场婚礼,人数超过367人,那么其中必然有生日相同的人(并非同年)。这就是抽屉原理。把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。运用到了数学的抽屉原理。2、猫的面积:冬天,猫睡觉时总是把身体抱成一个球形,是因为这样身体散发的热量最少。在数学中,体积一定,表面积最小的物体是球体。猫缩成一个球体,可以减小和外界接触的面积,降低热交换的速度,减少热量损失的速度,节省能量,保持体温。运用到了数学的面积学。3、四叶草叫“幸运草 ”:三叶草,学名苜蓿草,是多年生草本植物,一般只有三片小叶子,叶形呈心形状,叶心较深色的部分亦是心形。四叶草是由三叶草基因突变而产生的,它只占其中的十万分之一。也就说在十万株苜蓿草中,你可能只会发现一株是‘四叶草’,因为机率太小。因此“四叶草”是国际公认为幸运的象征。运用到了数学的概率学。4、车轮都是圆的而不是其他形状:圆的中心叫圆心,圆上任何一点到圆心的距离都是相等的。把车轮做成圆形,车轴在圆心上,当车轮在地面滚动时,车轴离地面的距离,总是等于车轮半径。因此,车里坐的人,就能平稳地被车子拉着走。假如车轮变了形,不成圆形了,轮上高一块低一块,到轴的距离不相等了,车就不会再平稳。运用到了数学的圆心知识。5、风扇的叶片都是奇数:这是因为奇数的叶片组合能比偶数的叶片组合带来更多的性能优势。如果一旦叶片数量为偶数片设计,并形成对称的排列方式的话,那么不但使得风扇自身的平衡性难以调整,而且容易使风扇在高速转时产生更多的共振,从而导致叶片无法长时间承受共振产生的疲劳,最终出现叶片断裂等情况。因此,轴流风扇的设计多为不对称的奇数片叶片设计。同样的设计理念在日常使用的电风扇或螺旋桨直升飞机的设计中都有体现。如果风扇是三叶结构,叶片制作较宽且叶片根部较强,各个部位的密度的等需均匀;如果为五叶结构,叶片较窄一些,厚度、强度也相对较低。运用到了数学的奇偶数概念。
眼泪欲望
2022-10-13 · TA获得超过635个赞
知道小有建树答主
回答量:3391
采纳率:100%
帮助的人:126万
展开全部
71个基本点如下:
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、定理 三角形两边的和大于第三边
16、推论 三角形两边的差小于第三边
17、三角形内角和定理 三角形三个内角的和等于180°
18、推论1 直角三角形的两个锐角互余
19、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21、全等三角形的对应边、对应角相等
22、边角边公理 有两边和它们的夹角对应相等的两个三角形全等
23、角边角公理 有两角和它们的夹边对应相等的两个三角形全等
24、推论 有两角和其中一角的对边对应相等的两个三角形全等
25、边边边公理 有三边对应相等的两个三角形全等
26、斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等
27、定理1 在角的平分线上的点到这个角的两边的距离相等
28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰三角形的性质定理 等腰三角形的两个底角相等
31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32、等腰三角形的顶角平分线、底边上的中线和高互相重合
33、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论1 三个角都相等的三角形是等边三角形
36、推论 2 有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1 平行四边形的对角相等
53、平行四边形性质定理2 平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3 平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60、矩形性质定理1 矩形的四个角都是直角
61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形
63、矩形判定定理2 对角线相等的平行四边形是矩形
64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、定理1 关于中心对称的两个图形是全等的;定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
怀沛芹0G4
2023-03-15
知道答主
回答量:22
采纳率:100%
帮助的人:4721
展开全部
有趣的数学知识有如下:
1、没有最大的质数。欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。
4、黄金分割提出者是毕达哥拉斯。有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。5、假如一条线段两端加上向外的两条斜线,另一条线段两端加上向内的两条斜线,则前者要显得比后者长得多。对于这种错觉有一种理论,叫神经抑制作用理论。它认为当两个轮廓彼此贴近时,视网膜上相邻的神经团会相互抑制,结果轮廓发生了位移,产生错觉。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2023-03-22
展开全部
数学小知识内容如下:1、最早使用小圆点作为小数点的是德国的数学家,叫克拉维斯。2、中国是最早使用四舍五入法进行计算的国家。3、数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到我们今天所使用的高度复杂的十进制表示方法。4、π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。5、e是近似值为2.71828的数,是一个无理数,因此,我们无法知道它的精确数值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
pawpaw0807
2023-05-03
知道答主
回答量:26
采纳率:0%
帮助的人:4830
展开全部
太多了,衣食住行,你随便举个例子,都与数学有关系
买卖 财务 工程建筑 做饭(加多少水多少克食材) 做衣服 数学和语文是最最基础的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式