如图,平行四边形ABCD的对角线AC,BD相交于O,E、F分别是OA、OC的中点。求证BE等于DF
如图,平行四边形ABCD的对角线AC,BD相交于O,E、F分别是OA、OC的中点。求证BE等于DF。...
如图,平行四边形ABCD的对角线AC,BD相交于O,E、F分别是OA、OC的中点。求证BE等于DF。
展开
1个回答
展开全部
【必须是平行四边形ABCD】
证法1:
∵四边形ABCD是平行四边形
∴AO=CO,BO=DO【平行四边形对角线互相平分】
∵E,F分别为OA,OC的中点
∴EO=FO
又∵∠EOB=∠FOD【对顶角相等】
∴⊿OBE≌⊿ODF(SAS)
∴∠BEO=∠DFO
∴BE//DF
证法2:
连接BF,ED
∵四边形ABCD是平行四边形
∴AO=CO,BO=DO【平行四边形对角线互相平分】
∵E,F分别为OA,OC的中点
∴EO=FO
∴四边形EBFD是平行四边形【对角线互相平分的四边形是平行四边形】
∴BE//CF
证法1:
∵四边形ABCD是平行四边形
∴AO=CO,BO=DO【平行四边形对角线互相平分】
∵E,F分别为OA,OC的中点
∴EO=FO
又∵∠EOB=∠FOD【对顶角相等】
∴⊿OBE≌⊿ODF(SAS)
∴∠BEO=∠DFO
∴BE//DF
证法2:
连接BF,ED
∵四边形ABCD是平行四边形
∴AO=CO,BO=DO【平行四边形对角线互相平分】
∵E,F分别为OA,OC的中点
∴EO=FO
∴四边形EBFD是平行四边形【对角线互相平分的四边形是平行四边形】
∴BE//CF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询