已知f(n)=sinnπ/4,n∈Z,求f(1)+f(2)+…+f(2005) 10
展开全部
k∈Z
sin((8k+1)π/4)=sqrt(2)/2
sin((8k+2)π/4)=1
sin((8k+3)π/4)=sqrt(2)/2
sin((8k+4)π/4)=0
sin((8k+5)π/4)=-sqrt(2)/2
sin((8k+6)π/4)=-1
sin((8k+7)π/4)=-sqrt(2)/2
sin((8k+8)π/4)=0
sin((8k+1)π/4)+sin((8k+2)π/4)+...+sin((8k+8)π/4)=0;
2005=8*250+5;
f(1)+f(2)+…+f(2005)=f(1)+f(2)+f(3)+f(4)+f(5)=1+sqrt(2)/2=1.7071
sin((8k+1)π/4)=sqrt(2)/2
sin((8k+2)π/4)=1
sin((8k+3)π/4)=sqrt(2)/2
sin((8k+4)π/4)=0
sin((8k+5)π/4)=-sqrt(2)/2
sin((8k+6)π/4)=-1
sin((8k+7)π/4)=-sqrt(2)/2
sin((8k+8)π/4)=0
sin((8k+1)π/4)+sin((8k+2)π/4)+...+sin((8k+8)π/4)=0;
2005=8*250+5;
f(1)+f(2)+…+f(2005)=f(1)+f(2)+f(3)+f(4)+f(5)=1+sqrt(2)/2=1.7071
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询