如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B
如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向C点以2cm/s的速度移动....
如图所示,在△ABC中,∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向C点以2cm/s的速度移动.(1)如果点P,Q分别从A,B同时出发,经过几秒钟后,△PBQ的面积等于8cm2;(2)如果点P,Q分别从A,B同时出发,并且点P到B点后又继续在BC边上前进,点Q到点C后又继续在CA边上前进,则经过几秒钟后,△PCQ的面积等于12.6cm2.
展开
1个回答
展开全部
(1)设经过x秒后,△PBQ的面积等于8cm2.
×(6-x)×2x=8,
解得x1=2 x2=4,
答:经过2或4秒后,△PBQ的面积等于8cm2.
(2)设经过y秒后,△PCQ的面积等于12.6cm2.
①0<y≤4(Q在BC上,P在AB上)时,如图:(1)连接PC,
则CQ=8-2y,PB=6-y,
∵S△PQC=
CQ×PB,
∴
×(8-2y)×(6-y)=12.6,
解得y1=5+
>4(不合题意,舍去),y2=5-
;
②4<y≤6(Q在CA上,P在AB上),如图(2)
过点P作PM⊥AC,交AC于点M,
由题意可知CQ=2y-8,AP=y,
在直角三角形ABC中,sinA=
=
,
在直角三角形APM中,sinA=
,
即
=
,
∴PM=
y,
∵S△PCQ=
CQ×PM,
∴
×(2y-8)×
y=12.6,
解得y1=2+
>6(舍去),y2=2-
1 |
2 |
解得x1=2 x2=4,
答:经过2或4秒后,△PBQ的面积等于8cm2.
(2)设经过y秒后,△PCQ的面积等于12.6cm2.
①0<y≤4(Q在BC上,P在AB上)时,如图:(1)连接PC,
则CQ=8-2y,PB=6-y,
∵S△PQC=
1 |
2 |
∴
1 |
2 |
解得y1=5+
2
| ||
5 |
2
| ||
5 |
②4<y≤6(Q在CA上,P在AB上),如图(2)
过点P作PM⊥AC,交AC于点M,
由题意可知CQ=2y-8,AP=y,
在直角三角形ABC中,sinA=
BC |
AC |
4 |
5 |
在直角三角形APM中,sinA=
PM |
AP |
即
PM |
y |
4 |
5 |
∴PM=
4 |
5 |
∵S△PCQ=
1 |
2 |
∴
1 |
2 |
4 |
5 |
解得y1=2+
| ||
2 |
|