∫xcosxdx的值是多少
2个回答
展开全部
∫xcosxdx的值是baix*sinx+cosx+C。
解答过程如下:
∫xcosxdx
=∫xdsinx
=x*sinx-∫sinxdx
=x*sinx+cosx+C
扩展资料
分部积分:
(uv)'=u'v+uv',得:u'v=(uv)'-uv'。
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx。
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式。
也可简写为:∫ v du = uv - ∫ u dv。
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
名片
2024-10-28 广告
2024-10-28 广告
作为优菁科技(上海)有限公司的一员,Altair HyperWorks是我们重点代理的CAE软件套件。该软件以其全面的仿真能力、丰富的建模工具和高效的优化设计功能著称,广泛应用于汽车、航空航天、能源及电子等行业。HyperWorks通过集成...
点击进入详情页
本回答由名片提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询