高中数列题(要过程)
数列bn的首项为1,且前n项和Sn满足Sn-S(n-1)=根号下Sn+根号下S(n-1)(n大于等于2),求bn的通项公式。...
数列bn的首项为1,且前n项和Sn满足Sn-S(n-1)=根号下Sn+根号下S(n-1) (n大于等于2),求bn的通项公式。
展开
展开全部
1.首先我认为题目的中的n-1是下标
2.=号左边变成bn,
3.在2的式子基础上,=两边同时乘以(根号下Sn-根号下S(n-1))
4.化简3的=的右边后,得根号下Sn-根号下S(n-1)= 1
5.依次类推:根号下S(n-1)-根号下S(n-2)= 1。。。。。。。
6.最后一个式子是根号下S(n-(n-2))-根号下S(n-(n-1))= 1
7.这些式子的左右两边分别加起来,得根号Sn-根号s1=n-1,
8.因为根号s1=b1=1,所以7的式子得根号Sn=n,
9.依次类推:根号S(n-1)=n-1
10.将8和9的式子代回原题目,得结果bn=2n-1
2.=号左边变成bn,
3.在2的式子基础上,=两边同时乘以(根号下Sn-根号下S(n-1))
4.化简3的=的右边后,得根号下Sn-根号下S(n-1)= 1
5.依次类推:根号下S(n-1)-根号下S(n-2)= 1。。。。。。。
6.最后一个式子是根号下S(n-(n-2))-根号下S(n-(n-1))= 1
7.这些式子的左右两边分别加起来,得根号Sn-根号s1=n-1,
8.因为根号s1=b1=1,所以7的式子得根号Sn=n,
9.依次类推:根号S(n-1)=n-1
10.将8和9的式子代回原题目,得结果bn=2n-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询