谁知道cos、sin、tan是什么比什么?

 我来答
禚瑶盛鸟
2020-03-09 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:934万
展开全部
直角三角形
就是有一个90度的角的三角形。
还有两个锐角,就是角度比90度小的角。
斜边就是
那个直角的对边,就是整个三角形中最长的那条边,就是不包括组成直角,剩下的那条边
对边就是这个角的开口方向冲着的那条边,它不是这个角的组成部分。
邻边就是组成这个角的一个边
每个角都是由两条射线组成的,这个知道吧!
那一个锐角来说,它的正弦sin
就是对边比上斜边,
余弦cos,就是它的邻边中的那条直角边比上斜边,就是两条邻边的长度比值,小的比大的!
正切tan,就是对边比上邻边中的那个直角边。
两角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)/(1+tanatanb)
cot(a+b)=(cotacotb-1)/(cotb+cota)
cot(a-b)=(cotacotb+1)/(cotb-cota)
倍角公式
tan2a=2tana/[1-(tana)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2
-1=1-2(sina)^2
sin2a=2sina*cosa
三倍角公式
sin3a=3sina-4(sina)^3
cos3a=4(cosa)^3-3cosa
tan3a=tana*tan(π/3+a)*tan(π/3-a)
半角公式
sin(a/2)=√((1-cosa)/2)
sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2)
cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa))
tan(a/2)=-√((1-cosa)/((1+cosa))
cot(a/2)=√((1+cosa)/((1-cosa))
cot(a/2)=-√((1+cosa)/((1-cosa))
tan(a/2)=(1-cosa)/sina=sina/(1+cosa)
和差化积
2sinacosb=sin(a+b)+sin(a-b)
2cosasinb=sin(a+b)-sin(a-b)
)
2cosacosb=cos(a+b)+cos(a-b)
-2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2
cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb
积化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tga=tana=sina/cosa
万能公式
sin(a)=
(2tan(a/2))/(1+tan^2(a/2))
cos(a)=
(1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)=
(2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)
[其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)
[其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重点三角函数
csc(a)=1/sin(a)
sec(a)=1/cos(a)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式