一道高数求极限的题目ln(sin²x+e^x)-x/x²+e^2x-2x
3个回答
展开全部
x->0
分子
(sinx)^2 = x^2 +o(x^2)
e^x = 1+ x +(1/2)x^2 +o(x^2)
(sinx)^2 + e^x = 1+x + (3/2)x^2 +o(x^2)
ln[ (sinx)^2 +e^x ]
=ln[1+x + (3/2)x^2 +o(x^2)]
=[x + (3/2)x^2 ] -(1/2)[x + (3/2)x^2 ]^2 +o(x^2)
=[x + (3/2)x^2 ] -(1/2)[x^2 +o(x^2) ] +o(x^2)
= x + x^2 +o(x^2)
ln[ (sinx)^2 +e^x ] -x =x^2 +o(x^2)
分母
e^(2x) = 1+2x+ 2x^2 +o(x^2)
x^2+e^(2x) =1+2x+ 3x^2 +o(x^2)
ln[x^2+e^(2x)]
=ln[1+2x+ 3x^2 +o(x^2)]
=(2x+ 3x^2) -(1/2)(2x+ 3x^2)^2 +o(x^2)
=(2x+ 3x^2) -(1/2)[4x^2+o(x^2) ] +o(x^2)
=2x +x^2 +o(x^2)
ln[x^2+e^(2x)] -2x =x^2 +o(x^2)
lim(x->0) { ln[ (sinx)^2 +e^x ] -x } / { ln[x^2+e^(2x)] -2x }
=lim(x->0) x^2 / x^2
=1
分子
(sinx)^2 = x^2 +o(x^2)
e^x = 1+ x +(1/2)x^2 +o(x^2)
(sinx)^2 + e^x = 1+x + (3/2)x^2 +o(x^2)
ln[ (sinx)^2 +e^x ]
=ln[1+x + (3/2)x^2 +o(x^2)]
=[x + (3/2)x^2 ] -(1/2)[x + (3/2)x^2 ]^2 +o(x^2)
=[x + (3/2)x^2 ] -(1/2)[x^2 +o(x^2) ] +o(x^2)
= x + x^2 +o(x^2)
ln[ (sinx)^2 +e^x ] -x =x^2 +o(x^2)
分母
e^(2x) = 1+2x+ 2x^2 +o(x^2)
x^2+e^(2x) =1+2x+ 3x^2 +o(x^2)
ln[x^2+e^(2x)]
=ln[1+2x+ 3x^2 +o(x^2)]
=(2x+ 3x^2) -(1/2)(2x+ 3x^2)^2 +o(x^2)
=(2x+ 3x^2) -(1/2)[4x^2+o(x^2) ] +o(x^2)
=2x +x^2 +o(x^2)
ln[x^2+e^(2x)] -2x =x^2 +o(x^2)
lim(x->0) { ln[ (sinx)^2 +e^x ] -x } / { ln[x^2+e^(2x)] -2x }
=lim(x->0) x^2 / x^2
=1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你用到了等价无穷小ln(1+x)~x,但是等价有前提,只有乘除的情况才可以用,后面有-2x,不可以直接用等价无穷小
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询