利用三角函数线证明:|sinα|+|cosα|≥1

利用三角函数线证明:|sinα|+|cosα|≥1.... 利用三角函数线证明:|sinα|+|cosα|≥1. 展开
 我来答
周肖八悟2492
2015-01-14 · 超过62用户采纳过TA的回答
知道答主
回答量:110
采纳率:0%
帮助的人:153万
展开全部
证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,
而余弦线(正弦线)的长等于r(r=1),
所以|sinα|+|cosα|=1.
当角α的终边落在四个象限时,设角α的终边与单位圆交于
点P(x,y)时,过P作PM⊥x轴于点M(如图),
则|sinα|=|MP|,|cosα|=|OM|,利用三角形两边之和大于第三边有:|sinα|+|cosα|=|MP|+|OM|>1,
综上有|sinα|+|cosα|≥1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式