在三角形ABC中,求证:sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
1个回答
展开全部
证明:
∵在三角形ABC中,
∴A+B+C=180度,得SINA=SIN(B+C)
则A/2=90度-(B+C)/2,得COSA/2=SIN((B+C)/2)
左边=Sin(B+C)+SinB+SinC
则4Cos(A/2)Cos(B/2)Cos(C/2)
=4Sin((B+C)/2)Cos(B/2)Cos(C/2)
=4Cos(B/2)Cos(C/2)(SinB/2·CosC/2+CosB/2·SiNC/2)
=4Sin(B/2)Cos(B/2)(Cos(C/2))^2+4Sin(C/2)Cos(C/2)(Cos(B/2))^2
=SinB(CosC+1)+SinC(CosB+1)
=Sin(B+C)+SinB+SinC
左边=右边
原式成立!
∵在三角形ABC中,
∴A+B+C=180度,得SINA=SIN(B+C)
则A/2=90度-(B+C)/2,得COSA/2=SIN((B+C)/2)
左边=Sin(B+C)+SinB+SinC
则4Cos(A/2)Cos(B/2)Cos(C/2)
=4Sin((B+C)/2)Cos(B/2)Cos(C/2)
=4Cos(B/2)Cos(C/2)(SinB/2·CosC/2+CosB/2·SiNC/2)
=4Sin(B/2)Cos(B/2)(Cos(C/2))^2+4Sin(C/2)Cos(C/2)(Cos(B/2))^2
=SinB(CosC+1)+SinC(CosB+1)
=Sin(B+C)+SinB+SinC
左边=右边
原式成立!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询