平行四边形证明方法
平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形,一般用图形名称加四个顶点依次命名。
1、有一组对边平行且相等的四边形是平行四边形。
2、有两组对边分别平行的四边形是平行四边形。
3、有两组对边分别相等的四边形是平行四边形。
4、有两组对角相等的四边形是平行四边形。
5、对角线互相平分的四边形是平行四边形。补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
基本性质:
矩形(矩形、菱形、正方形都是特殊的平行四边形。)
1、如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
2、如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
3、如果一个四边形是平行四边形,那么这个四边形的邻角互补。
4、夹在两条平行线间的平行的高相等。
5、如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
6、连接任意四边形各边的中点所得图形是平行四边形。
7、平行四边形的面积等于底和高的积。
8、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
9、平行四边形是中心对称图形,对称中心是两对角线的交点.
10、平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。