设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x
设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是()A.B.C.D....
设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是( )A.B.C.D.
展开
展开全部
由y=f(x)ex=ex(ax2+bx+c)?y'=f'(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=-1为函数f(x)ex的一个极值点可得,-1是方程ax2+(b+2a)x+b+c=0的一个根,
所以有a-(b+2a)+b+c=0?c=a.
法一:所以函数f(x)=ax2+bx+a,对称轴为x=-
,且f(-1)=2a-b,f(0)=a.
对于A,由图得a>0,f(0)>0,f(-1)=0符合要求,
对于B,由图得a<0,f(0)<0,f(-1)=0不矛盾,
对于C,由图得a<0,f(0)<0,x=-
>0?b>0?f(-1)<0不矛盾,
对于D,由图得a>0,f(0)>0,x=-
<-1?b>2a?f(-1)<0于原图中f(-1)>0矛盾,D不对.
法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立
故选 D.
由x=-1为函数f(x)ex的一个极值点可得,-1是方程ax2+(b+2a)x+b+c=0的一个根,
所以有a-(b+2a)+b+c=0?c=a.
法一:所以函数f(x)=ax2+bx+a,对称轴为x=-
b |
2a |
对于A,由图得a>0,f(0)>0,f(-1)=0符合要求,
对于B,由图得a<0,f(0)<0,f(-1)=0不矛盾,
对于C,由图得a<0,f(0)<0,x=-
b |
2a |
对于D,由图得a>0,f(0)>0,x=-
b |
2a |
法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立
故选 D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询