求解微分方程的通解和满足初始条件的特解,y=e^(x-y) 条件x=2,y=o 正确答案为y=in(e^x+e^2-1)需要解题过程

⑵tanydx-cotxdy=0正确答案siny×cosx=C⑶y=(xy+y)/(x+xy)x=1y=1正确答案ye^y=xe^x谢谢... ⑵tanydx-cotxdy=0 正确答案siny×cosx=C ⑶y=(xy+y)/(x+xy) x=1y=1 正确答案ye^y=xe^x谢谢 展开
 我来答
heanmen
2010-11-27 · TA获得超过1.7万个赞
知道大有可为答主
回答量:4283
采纳率:100%
帮助的人:2571万
展开全部
解:(1)∵y'=e^(x-y) ==>dy/dx=e^x*e^(-y)
==>e^ydy=e^xdx
==>e^y=e^x+C (C是积分常数)
==>y=ln│e^x+C│
又当x=2时,y=0
∴1=e²+C ==>C=1-e²
故满足初始条件的特解是y=ln│e^x-e²+1│
(说明:此结果与你的答案有点出入);
(2)∵tanydx-cotxdy=0 ==>sinydx/cosy=cosxdy/sinx
==>sinxdx/cosx=cosydy/siny
==>d(siny)/siny=-d(cosx)/cosx
==>ln│siny│=-ln│cosx│+ln│C│ (C是积分常数)
==>siny=C/cosx
==>siny*cosx=C
∴原方程的通解是siny*cosx=C (C是积分常数)。
(3)∵y'=(xy+y)/(x+xy) ==>dy/dx=y(x+1)/[x(y+1)]
==>(1+1/y)dy=(1+1/x)dx
==>y+ln│y│=x+ln│x│+C (C是积分常数)
又当x=1时,y=1
∴1=1+C ==>C=0
==>y+ln│y│=x+ln│x│
==>ln│y│-ln│x│=x-y
==>y/x=e^x*e^(-y)
==>ye^y=xe^x
故满足初始条件的特解是ye^y=xe^x。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式