在秦汉以前,通常以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过到最后还是没有统一到底是多少。
到了三国的时候,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。祖冲之在前人成就的基础上,经过刻苦钻研和反复的演算终于得出了现在的圆周率。
圆的周长与直径之比是一个常数,通常称为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,经过欧拉予以提倡,才渐渐的推广开来。
在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是这样的,到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为3.16。
直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。
2013-12-12
圆周率是根据已知圆面积被"化圆为方"时,发现“圆面积是它外切正方形面积的九分之七”。在已它外切正方形面积的九分之七拼补上九分之二就推出了对应的直径是3和对应的圆的周长是6+2√3。
由此可见,圆的周长与直径的唯一一个比本是:6+2√3比3。根据这个比,圆周率π只能等于(6+2√3)/3(或约等于3.1547005...也是我国西汉的文学家刘歆最早首先确定为圆周率)。
其余的比值都属于“正n边形的周长与对角线的比”计算的比值(或正6x2ⁿ边形的周长与过中心点的对角线的比值)为正n边率。