分离常数法最终求的值域是怎样求出来的
1个回答
展开全部
所谓分离常数就是把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子
所以就有了解法1:因为含有的未知数是分母是2x,分子是-x,所以要让它们成倍数关系,就得给分子乘以一个常数-1/2,这样-1/2·(2x+5)=-x-5/2,然后配凑常数相等即可
∴y=(1-x)/(2x+5)=((-1/2)·(2x+5)+7/2)/(2x+5)=((-1/2)·(2x+5)/(2x+5)+(7/2)/(2x+5)=-1/2+(7/2)/(2x+5)
解法2:令分母2x+5=t,则t=1/2·(t-5)
代入分子,y=(1-1/2·(t-5))/t=(-t/2+7/2)/t=-1/2+(7/2)/t
然后把t代换回来,有y=-1/2+(7/2)/(2x+5)
所以就有了解法1:因为含有的未知数是分母是2x,分子是-x,所以要让它们成倍数关系,就得给分子乘以一个常数-1/2,这样-1/2·(2x+5)=-x-5/2,然后配凑常数相等即可
∴y=(1-x)/(2x+5)=((-1/2)·(2x+5)+7/2)/(2x+5)=((-1/2)·(2x+5)/(2x+5)+(7/2)/(2x+5)=-1/2+(7/2)/(2x+5)
解法2:令分母2x+5=t,则t=1/2·(t-5)
代入分子,y=(1-1/2·(t-5))/t=(-t/2+7/2)/t=-1/2+(7/2)/t
然后把t代换回来,有y=-1/2+(7/2)/(2x+5)
创远信科
2024-07-24 广告
2024-07-24 广告
同轴线介电常数是指同轴电缆中介质对电场的响应能力,通常用ε_r表示,是介质相对于真空或空气的电容率。这一参数直接影响信号在电缆中的传播速度和效率。在选择同轴电缆时,需要考虑其介电常数,因为它与电缆的插入损耗、带宽和传输质量等性能密切相关。创...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询