3个回答
展开全部
第二个重要极限的公式:lim (1+1/x) ^x = e(x→∞) 当 x → ∞ 时,(1+1/x)^x的极限等于e;或 当 x → 0 时,(1+x)^(1/x)的极限等于e。
设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。
如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥ε,就说数列{xn}不收敛于a。如果{xn}不收敛于任何常数,就称{xn}发散。
极限的求法:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
展开全部
下面的极限可以得知是1
而上面的极限可以由公式lim(1+1/n)^n=e
令n=-x/2 则 原式=lim(1-2/x)^(-x/2)=e
上面的式子对比就是e^(-2)
所以对啦 记得采纳哟
而上面的极限可以由公式lim(1+1/n)^n=e
令n=-x/2 则 原式=lim(1-2/x)^(-x/2)=e
上面的式子对比就是e^(-2)
所以对啦 记得采纳哟
更多追问追答
追问
我想问的就是下面的为何是1 上面的我算出来了
追答
…………
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询