记数列{an}的前n项和为Sn,若{Snan}是公差为d的等差数列,则{an}为等差数列时d=______
记数列{an}的前n项和为Sn,若{Snan}是公差为d的等差数列,则{an}为等差数列时d=______....
记数列{an}的前n项和为Sn,若{Snan}是公差为d的等差数列,则{an}为等差数列时d=______.
展开
1个回答
展开全部
∵{
}是
=1为首项,d为公差的等差数列,
∴
=1+(n-1)d,
∴Sn=an+(n-1)dan,①
Sn-1=an-1+(n-2)dan-1.②
①-②得:
an=an+(n-1)dan-an-1-(n-2)dan-1,
整理可得
(n-1)dan-(n-1)dan-1=(1-d)an-1,
假设d=0,那么
=1,
S1=a1,S2=a1+a2=a2,
∴a1=0,∵a1为除数,不能为0,∴d≠0.
在此假设an的公差为d′,
所以有d′=
,
当d=1时,d′=0,an是以a1为首项,0为公差的等差数列.
当d≠1时,an-1=(n-1)
,
an-an-1=
=d′,
∴d=
,
此时,an是以d′为首项,d′为公差的等差数列.
综上所述,d=1,或d=
.
故答案为:1或
.
Sn |
an |
S1 |
a1 |
∴
Sn |
an |
∴Sn=an+(n-1)dan,①
Sn-1=an-1+(n-2)dan-1.②
①-②得:
an=an+(n-1)dan-an-1-(n-2)dan-1,
整理可得
(n-1)dan-(n-1)dan-1=(1-d)an-1,
假设d=0,那么
Sn |
an |
S1=a1,S2=a1+a2=a2,
∴a1=0,∵a1为除数,不能为0,∴d≠0.
在此假设an的公差为d′,
所以有d′=
(1?d)an?1 |
(n?1)d |
当d=1时,d′=0,an是以a1为首项,0为公差的等差数列.
当d≠1时,an-1=(n-1)
d?d′ |
1?d |
an-an-1=
d?d′ |
1?d |
∴d=
1 |
2 |
此时,an是以d′为首项,d′为公差的等差数列.
综上所述,d=1,或d=
1 |
2 |
故答案为:1或
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询