(2014?贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③

(2014?贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2,其中正确... (2014?贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有(  )A.1个B.2个C.3个D.4个 展开
 我来答
█绪凡█374
2014-12-05 · TA获得超过467个赞
知道答主
回答量:196
采纳率:100%
帮助的人:62.6万
展开全部
①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;

②由抛物线与x轴有两个交点,可得b2-4ac>0,故②正确;

③当x=-2时,y<0,即4a-2b+c<0 (1)
当x=1时,y<0,即a+b+c<0 (2)
(1)+(2)×2得:6a+3c<0,
即2a+c<0
又∵a<0,
∴a+(2a+c)=3a+c<0.
故③错误;

④∵x=1时,y=a+b+c<0,x=-1时,y=a-b+c>0,
∴(a+b+c)(a-b+c)<0,
即[(a+c)+b][(a+c)-b]=(a+c)2-b2<0,
∴(a+c)2<b2
故④正确.
综上所述,正确的结论有2个.
故选:B.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式