概率那里,P(A-B)等于什么?怎么推导得来的?
首先需要用到这个:
当A∩B=∅ (即A,B互斥)时:P(A+B)=P(A)+P(B);
下面证明提问所给结论:
注意到:当B包含于A时有:
A=B + (A-B) 而且B∩(A-B)=∅
因此有:P(A)=P(B)+P(A-B)
所以就有了后面的结论:P(A-B)=P(A) - P(B)
而当没有B包含于A的条件时:则由于:A - B = A - AB
而AB是包含于A的;因此:
因而有P(A-B)=P(A-AB) = P(A) - P(AB)
扩展资料:
随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加;
一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。
条件概率:
当B条件发生时,A发生的概率
算法是P(AB)/P(B)
p(AB)为AB同时发生的概率
扩展资料
概率的计算,是根据实际的条件来决定的,没有一个统一的万能公式。解决概率问题的关键,在于对具体问题的分析。然后,再考虑使用适宜的公式。
但是有一个公式是常用到的:
P(A)=m/n
“(A)”表示事件
“m”表示事件(A)发生的总数
“n”是总事件发生的总数