过抛物线y^2=4x的焦点,作直线与抛物线的交于P,Q,求线段PQ中点的轨迹方程
1个回答
展开全部
设P(x1,y1),Q(x2,y2),线段PQ中点M(x,y).
则y1²=4x1,y2²=4x2
两式相减得:(y1 +y2)( y1 -y2)=4(x1- x2)
因为y1 +y2=2y,
所以( y1 -y2)/(x1- x2)=4/(2y)=2/y.
又因PQ过焦点(1,0),所以直线的斜率又可表示为y/(x-1).
∴2/y =y/(x-1).
y²=2(x-1).这就是线段PQ中点的轨迹方程。
则y1²=4x1,y2²=4x2
两式相减得:(y1 +y2)( y1 -y2)=4(x1- x2)
因为y1 +y2=2y,
所以( y1 -y2)/(x1- x2)=4/(2y)=2/y.
又因PQ过焦点(1,0),所以直线的斜率又可表示为y/(x-1).
∴2/y =y/(x-1).
y²=2(x-1).这就是线段PQ中点的轨迹方程。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询