设数列{an}满足a1+2a2+3a3+....+nan=n(n+1)(n+2)
1个回答
展开全部
解:
令n=1时,a1=1*2*3=6;
依题意:
a1+2a2+3a3+....+nan=n(n+1)(n+2),
a1+2a2+3a3+....+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)
两式相减,得到(n+1)a(n+1)=(n+1)(n+2)(n+3)-n(n+1)(n+2),故a(n+1)=(n+2)(n+3)-n(n+2)=3(n+2),
从而:an=3(n+1)
(n≥2)
经检验an(a≥2)也适合a1的情况
故通项an=3(n+1).
令n=1时,a1=1*2*3=6;
依题意:
a1+2a2+3a3+....+nan=n(n+1)(n+2),
a1+2a2+3a3+....+nan+(n+1)a(n+1)=(n+1)(n+2)(n+3)
两式相减,得到(n+1)a(n+1)=(n+1)(n+2)(n+3)-n(n+1)(n+2),故a(n+1)=(n+2)(n+3)-n(n+2)=3(n+2),
从而:an=3(n+1)
(n≥2)
经检验an(a≥2)也适合a1的情况
故通项an=3(n+1).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询