y=3sin(2x+π/3)的最小值为?最大值为?单调增区间为?减区间为?
1个回答
展开全部
y=3sin(2x+π/3)的最小值为-3,最大值为3,单调增区间为[Kπ-5π/12,Kπ+π/12]
减区间为[Kπ+π/12,Kπ+7π/12]
分析:y=sinx最小值为-1,最大值为1,单调增区间[2Kπ-π/2,2Kπ+π/2],单调减区间[2Kπ+π/2,2Kπ+3π/2]
所以函数y=3sin(2x+π/3)
2Kπ-π/2≤2x+π/3≤2Kπ+π/2
2Kπ-5π/6≤2x≤2Kπ+π/6
Kπ-5π/12≤x≤Kπ+π/12
同理
2Kπ+π/2≤2x+π/3≤2Kπ+3π/2
Kπ+π/12≤x≤Kπ+7π/12
减区间为[Kπ+π/12,Kπ+7π/12]
分析:y=sinx最小值为-1,最大值为1,单调增区间[2Kπ-π/2,2Kπ+π/2],单调减区间[2Kπ+π/2,2Kπ+3π/2]
所以函数y=3sin(2x+π/3)
2Kπ-π/2≤2x+π/3≤2Kπ+π/2
2Kπ-5π/6≤2x≤2Kπ+π/6
Kπ-5π/12≤x≤Kπ+π/12
同理
2Kπ+π/2≤2x+π/3≤2Kπ+3π/2
Kπ+π/12≤x≤Kπ+7π/12
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询