聚类分析优缺点
优缺点如下:
1、优点
k-平均算法是解决聚类问题的一种经典算法,算法简单、快速。
对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt) O(nkt)O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法经常以局部最优结束。
算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,而簇与簇之间区别明显时,它的聚类效果很好。
2、缺点
对K值敏感。也就是说,K的选择会较大程度上影响分类效果。在聚类之前,我们需要预先设定K的大小,但是我们很难确定分成几类是最佳的,比如上面的数据集中,显然分为2类,即K = 2最好,但是当数据量很大时,我们预先无法判断。
对离群点和噪声点敏感。如果在上述数据集中添加一个噪音点,这个噪音点独立成一个类。很显然,如果K=2,其余点是一类,噪音点自成一类,原本可以区分出来的点被噪音点影响,成为了一类了。如果K=3,噪音点也是自成一类,剩下的数据分成两类。这说明噪音点会极大的影响其他点的分类。
聚类分析特点
聚类分析的实质:是建立一种分类方法,它能够将一批样本数据按照他们在性质上的亲密程度在没有先验知识的情况下自动进行分类。这里所说的类就是一个具有相似性的个体的集合,不同类之间具有明显的区别。
层次聚类分析是根据观察值或变量之间的亲疏程度,将最相似的对象结合在 一起,以逐次聚合的方式(Agglomerative Clustering),它将观察值分类,直到最后所有样本都聚成一类。
层次聚类分析有两种形式,一种是对样本(个案)进行分类,称为Q型聚类;另一种是对研究对象的观察变量进行分类,称为R型聚类。