绕y轴旋转一周所得的旋转体体积

 我来答
猫先生143
2023-08-08 · TA获得超过669个赞
知道大有可为答主
回答量:3.1万
采纳率:0%
帮助的人:418万
展开全部

曲线y=x²与直线x=1及x轴所围成的平面图形绕y轴旋转一周得到的旋转体体积是多少?

答案为π/2。

解题过程如下:

先求y=1,y轴与y=x²所围成的图形旋转一周得到的旋转体体积,再利用整体圆柱的体积π减去上述体积即为所求,其中y=x²要化为x等于√y。公式如下:

V=π-∫(0,1)π(√y)²dy

=π-π/2[y²](0,1)

=π-π/2

=π/2

二次函数表达式为y=ax2+bx+c(且a≠0),它的定义是一个二次多项式(或单项式)。

如果令y值等于零,则可得一个二次方程。该方程的解称为方程的根或函数的零点。

扩展资料

函数性质

二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。

一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧。(可巧记为:左同右异)

常数项c决定抛物线与y轴交点。抛物线与y轴交于(0, c)。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
蔚蓝精密有限公司
2024-11-20 广告
深圳市蔚蓝精密有限公司简介: 深圳市蔚蓝精密有限公司是一家专业从事精密塑胶模具、塑胶产品的设计与销售的企业,同时也涉及货物及技术进出口。公司致力于提供高质量的产品和服务,以满足客户的需求。主营产品和服务: 公司的主营产品包括精密塑胶模具和塑... 点击进入详情页
本回答由蔚蓝精密有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式