大学数学极限的四则运算的两道题,求大神解答!! 是(6)和第八题、
1个回答
展开全部
设C=limf(x),则f(x)=x²+2Cx,由已知得C=1+2C,C=-1故f(x)=x²-2x
极限存在,满足洛必达即分子=0,可得c=2,第一次洛必达
lim=lim(2a(x-1)+b-2x/2√(x²+3))/2(x-1)
=lim(2a(x-1)√(x²+3)+b√(x²+3)-x)/2(x-1)√(x²+3)
依然满足洛必达故2b-1=0,b=1/2,继续洛必达
=lim(2a√(x²+3)+2a(x-1)x/√(x²+3)+x/2√(x²+3)-1)/(2√(x²+3)+2(x-1)x/√(x²+3)
分子=4a+0+1/4-1,分母=4+0≠0,故4a+0+1/4-1=0,a=3/16
极限存在,满足洛必达即分子=0,可得c=2,第一次洛必达
lim=lim(2a(x-1)+b-2x/2√(x²+3))/2(x-1)
=lim(2a(x-1)√(x²+3)+b√(x²+3)-x)/2(x-1)√(x²+3)
依然满足洛必达故2b-1=0,b=1/2,继续洛必达
=lim(2a√(x²+3)+2a(x-1)x/√(x²+3)+x/2√(x²+3)-1)/(2√(x²+3)+2(x-1)x/√(x²+3)
分子=4a+0+1/4-1,分母=4+0≠0,故4a+0+1/4-1=0,a=3/16
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询