求下列不定积分∫ x/(x²-x-2) dx
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
2个回答
展开全部
∫ x/(x²-x-2) dx
=1/2∫[(2x-1)+1]/x²-x-2dx
=1/2∫d(x²-x-2)/(x²-x-2)+1/2∫1/(x²-x-2)dx
=1/2ln(x²-x-2)+1/2∫ d(x-1/2)/[(x-1/2)²-(3/2)²]
=1/2ln(x²-x-2)+1/2×1/3ln丨(x-2)/(x-1)丨+C
=2/3ln丨x-2丨+1/3ln丨x+1丨+C
=1/2∫[(2x-1)+1]/x²-x-2dx
=1/2∫d(x²-x-2)/(x²-x-2)+1/2∫1/(x²-x-2)dx
=1/2ln(x²-x-2)+1/2∫ d(x-1/2)/[(x-1/2)²-(3/2)²]
=1/2ln(x²-x-2)+1/2×1/3ln丨(x-2)/(x-1)丨+C
=2/3ln丨x-2丨+1/3ln丨x+1丨+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询