数列证明题
已知数列an的前项和为Sn,a1=1,nSn+1-(n+1)Sn=n^2+cn,S1,S2/2,S3/3成等差数列.(1)求C的值.(2)求数列{an}的通项公式.(3)...
已知数列an的前项和为Sn,a1=1,nSn+1-(n+1)Sn=n^2+cn,S1,S2/2,S3/3成等差数列.(1)求C的值.(2)求数列{an}的通项公式.(3)设:Tn=1/S1+1/S2+…+1/Sn.求证:Tn<2
展开
1个回答
2010-12-08
展开全部
nSn+1-(n+1)Sn=n^2+cn
两边同除以n(n+1)
=>Sn+1/(n+1)-Sn/n=(n+c)/(n+1)
S1,S2/2,S3/3成等差数列
=>c=1
Sn/n=n
=>Sn=n^2
=>an=2n-1
Tn=1+1/2^2+…+1/n^2
<1+1/4+…+1/2^n
=2-0.5^n<2
=>Tn<2
两边同除以n(n+1)
=>Sn+1/(n+1)-Sn/n=(n+c)/(n+1)
S1,S2/2,S3/3成等差数列
=>c=1
Sn/n=n
=>Sn=n^2
=>an=2n-1
Tn=1+1/2^2+…+1/n^2
<1+1/4+…+1/2^n
=2-0.5^n<2
=>Tn<2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询