设A是mxn矩阵,B是nxm矩阵,则线性方程组ABX=0……

答案是当M>N时必有非零解,能解释下为神马?... 答案是当M>N时必有非零解,能解释下为神马? 展开
帐号已注销
2020-12-07 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

当m>n时,r(A)<=n<m , R(B)<=n<m

所以 r(AB)<=n<m,而AB是m阶方阵,所以AB不满秩

所以ABX有非0解

例如:

设r(ab)=r,则线性方程组abx=0的基础解系中含有s-r个解向量,又线性方程组abx=0与bx=0同解,所以线性方程组bx=0的基础解系中也含有s-r个解向量,所以r(b)=s-(s-r)=r

即r(ab)=r(b)

反之,若r(ab)=r(b),则线性方程组abx=0与bx=0的基础解系中所含解向量的个数相同。又显然bx=0的所有解都是abx=0的解,所以bx=0的一个基础解系也是abx=0的基础解系。故线性方程组abx=0与bx=0同解。

扩展资料:

对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r<n时,有无穷多解;可用消元法求解。

非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。

参考资料来源:百度百科-线性方程组

哆嗒数学网
推荐于2017-12-15 · 教育领域创作者
个人认证用户
哆嗒数学网
采纳数:2537 获赞数:18812

向TA提问 私信TA
展开全部
当m>n时,r(A)<=n<m , R(B)<=n<m
所以 r(AB)<=n<m,而AB是m阶方阵,所以AB不满秩
所以ABX有非0解
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式