请问1^k+2^k+3^k+......+n^k=?
1个回答
展开全部
不知道你学过二项式定理吗?知道组合数C(n,m)吗?
假设你已经学过的话,看看下面的推导公式
(n-1)^k=n^k+C(k,1)*n^(k-1)*(-1)+C(k,2)*n^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
(n-2)^k=[(n-1)-1]^k=(n-1)^k+C(k,1)*(n-1)^(k-1)*(-1)+C(k,2)*(n-1)^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
(n-3)^k=[(n-2)-1]^k=(n-2)^k+C(k,1)*(n-2)^(k-1)*(-1)+C(k,2)*(n-2)^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
............
2^k=(3-1)^k=3^k+C(k,1)*3^(k-1)*(-1)+C(k,2)*3^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
1^k=(2-1)^k=2^k+C(k,1)*2^(k-1)*(-1)+C(k,2)*2^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
这n-1个式子相加,得:
1^k=n^k+C(k,1)*(-1)*[2^(k-1)+3^(k-1)+...+n^(k-1)]+C(k,2)*(-1)^2*[2^(k-2)+3^(k-2)+...+n^(k-1)]+...+(n-1)*C(k,k)*(-1)^k
如果令关于k的函数S(k)=1^k+2^k+...+n^k
则1=n^k+C(k,1)*(-1)*[S(k-1)-1]+C(k,2)*(-1)^2*[S(k-2)-1]+...+(n-1)*(-1)^k
由此可以得出S(k-1)关于S(k-2)、S(k-3)、...、S(2)和S(1)的地推公式
已知S(1)=1+2+...+n=n(n+1)/2
S(2)=1^2+2^2+...+n^2=n(n+1)(2n+1)/2
............
通过递推公式,便能求出S(k)
原题得解
请采纳答案,支持我一下。
假设你已经学过的话,看看下面的推导公式
(n-1)^k=n^k+C(k,1)*n^(k-1)*(-1)+C(k,2)*n^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
(n-2)^k=[(n-1)-1]^k=(n-1)^k+C(k,1)*(n-1)^(k-1)*(-1)+C(k,2)*(n-1)^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
(n-3)^k=[(n-2)-1]^k=(n-2)^k+C(k,1)*(n-2)^(k-1)*(-1)+C(k,2)*(n-2)^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
............
2^k=(3-1)^k=3^k+C(k,1)*3^(k-1)*(-1)+C(k,2)*3^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
1^k=(2-1)^k=2^k+C(k,1)*2^(k-1)*(-1)+C(k,2)*2^(k-2)*(-1)^2+...+C(k,k)*(-1)^k
这n-1个式子相加,得:
1^k=n^k+C(k,1)*(-1)*[2^(k-1)+3^(k-1)+...+n^(k-1)]+C(k,2)*(-1)^2*[2^(k-2)+3^(k-2)+...+n^(k-1)]+...+(n-1)*C(k,k)*(-1)^k
如果令关于k的函数S(k)=1^k+2^k+...+n^k
则1=n^k+C(k,1)*(-1)*[S(k-1)-1]+C(k,2)*(-1)^2*[S(k-2)-1]+...+(n-1)*(-1)^k
由此可以得出S(k-1)关于S(k-2)、S(k-3)、...、S(2)和S(1)的地推公式
已知S(1)=1+2+...+n=n(n+1)/2
S(2)=1^2+2^2+...+n^2=n(n+1)(2n+1)/2
............
通过递推公式,便能求出S(k)
原题得解
请采纳答案,支持我一下。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询