定义在R上的函数f(x)满足对任意x,y∈R都有f(x+y)=f(x)+f(y).当x>0,f(x)>0,(1)求证:f
定义在R上的函数f(x)满足对任意x,y∈R都有f(x+y)=f(x)+f(y).当x>0,f(x)>0,(1)求证:f(x)为奇函数;(2)判断f(x)的单调性并证明;...
定义在R上的函数f(x)满足对任意x,y∈R都有f(x+y)=f(x)+f(y).当x>0,f(x)>0,(1)求证:f(x)为奇函数;(2)判断f(x)的单调性并证明;(3)解不等式:f[log2(x+1x+6)]+f(?3)≤0.
展开
展开全部
(1)令x=y=0,则f(0)=0,令y=-x,
则f(x)+f(-x)=f(0)=0,?f(-x)=-f(x),
且函数y=f(x)的定义域关于原点对称,
∴f(x)为奇函数
(2)f(x)为R上的单调增函数,设x1<x2,则x2-x1>0,f(x2-x1)>0,
f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1)>f(x1)
∴f(x)为R上的单调增函数
(3)由(1)知f(0)=0及f(x)在R上单调递增
∴原不等式等价于f[log2(x+
+6)+(?3)]≤f(0)
?log2(x+
+6)≤3?0<x+
+6≤8
?
或
解得解集为{x|x=1或?3?2
<x<?3+2
}
则f(x)+f(-x)=f(0)=0,?f(-x)=-f(x),
且函数y=f(x)的定义域关于原点对称,
∴f(x)为奇函数
(2)f(x)为R上的单调增函数,设x1<x2,则x2-x1>0,f(x2-x1)>0,
f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1)>f(x1)
∴f(x)为R上的单调增函数
(3)由(1)知f(0)=0及f(x)在R上单调递增
∴原不等式等价于f[log2(x+
1 |
x |
?log2(x+
1 |
x |
1 |
x |
?
|
|
解得解集为{x|x=1或?3?2
2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询