22.(8分)某产品每件成本10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如
22.(8分)某产品每件成本10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)20253035y(件)30252015(1)在...
22.(8分)某产品每件成本10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:
x(元) 20 25 30 35
y(件) 30 25 20 15
(1)在草稿纸上描点,观察点的分布,确定y与x的函数关系式.
(2)要使日销售利润最大,每件产品的销售价应为多少元?此时日销售利润是多少元?
解:(1)y= 展开
x(元) 20 25 30 35
y(件) 30 25 20 15
(1)在草稿纸上描点,观察点的分布,确定y与x的函数关系式.
(2)要使日销售利润最大,每件产品的销售价应为多少元?此时日销售利润是多少元?
解:(1)y= 展开
5个回答
展开全部
(1)由每件产品的日销售价x(元)与产品的日销量y(件)之间的关系可以看出:随着售价的增大,日销售量逐渐减小
所以:
设销售量y与每件售价x的关系为:y=kx+b
那么:
20k+b=30
25k+b=25
解得:k=-1、b=50
即:y=-x+50
注意检验,(30,20)、(35,15)满足上式
其实最正规的是要画图像,但是这种方法也行
(2)销售利润=(售价-成本)*销量
所以,设每件售价为x,由上面的函数关系得到销售量y=-x+40
日利润y=(x-10)*(-x+50)=-x^2+60x-500
=-(x^2-60x+900)+400
=-(x-30)^2+400
当x=30时,函数y=-(x-30)^2+400 有最大值400
即每件售价为30元时,日利润最大,最大值为400元
所以:
设销售量y与每件售价x的关系为:y=kx+b
那么:
20k+b=30
25k+b=25
解得:k=-1、b=50
即:y=-x+50
注意检验,(30,20)、(35,15)满足上式
其实最正规的是要画图像,但是这种方法也行
(2)销售利润=(售价-成本)*销量
所以,设每件售价为x,由上面的函数关系得到销售量y=-x+40
日利润y=(x-10)*(-x+50)=-x^2+60x-500
=-(x^2-60x+900)+400
=-(x-30)^2+400
当x=30时,函数y=-(x-30)^2+400 有最大值400
即每件售价为30元时,日利润最大,最大值为400元
展开全部
解(1)
设函数解析式y=kx+b,经过(20,30)(25,25)
30=20k+b (1)
25=25k+b(2)
(1)-(2)-5k=5,k=-1
把k=-1代人(1)
b=50
所以y=-x+50
(2)
设每日的销售利润为m
所以 m=(-x+50)(x-10)=-x²=60x-500=-(x-30)²+400
当x=30时,最大值为400
设函数解析式y=kx+b,经过(20,30)(25,25)
30=20k+b (1)
25=25k+b(2)
(1)-(2)-5k=5,k=-1
把k=-1代人(1)
b=50
所以y=-x+50
(2)
设每日的销售利润为m
所以 m=(-x+50)(x-10)=-x²=60x-500=-(x-30)²+400
当x=30时,最大值为400
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.
∴
15k+b=25
20k+b=20
,
解得:
k=?1
b=40
.
∴y=-x+40.
∴y与x的函数关系式是y=-x+40;
(2)设每日的销售利润为m元.
则m=y(x-10)
=(-x+40)(x-10)
=-x2+50x-400
=-(x-25)2+225,
∴当x=25时,m最大=225.
答:每件产品的销售价定为25元时,每日销售利润最大是225元.
∴
15k+b=25
20k+b=20
,
解得:
k=?1
b=40
.
∴y=-x+40.
∴y与x的函数关系式是y=-x+40;
(2)设每日的销售利润为m元.
则m=y(x-10)
=(-x+40)(x-10)
=-x2+50x-400
=-(x-25)2+225,
∴当x=25时,m最大=225.
答:每件产品的销售价定为25元时,每日销售利润最大是225元.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
XY关系X+Y=40,(X-10)×Y=200,得(X-10)×(40-X)=200,X^2-50X+600=0,解得X1=60、X2=-10舍去。利润为200元时,每件产品的销售价为60元。
设最大利润Z,Z=(X-10)×Y=(X-10)×(40-X)=-X^2+50X-400=-(x-25)^2+225,当X=25即单价25元时,有最大利润225元。
设最大利润Z,Z=(X-10)×Y=(X-10)×(40-X)=-X^2+50X-400=-(x-25)^2+225,当X=25即单价25元时,有最大利润225元。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询