展开全部
∫sin⁵(t/2)dt
=-2∫[cos²(t/2)-1]²d[cos(t/2)]
=-2∫[cos⁴(t/2) -2cos²(t/2) +1]du
=-2[(1/5)cos⁵(t/2) -⅔cos³(t/2) +cos(t/2)] +C
=(-2/15)[3cos⁴(t/2) -10cos²(t/2) +15]cos(t/2) +C
=-2∫[cos²(t/2)-1]²d[cos(t/2)]
=-2∫[cos⁴(t/2) -2cos²(t/2) +1]du
=-2[(1/5)cos⁵(t/2) -⅔cos³(t/2) +cos(t/2)] +C
=(-2/15)[3cos⁴(t/2) -10cos²(t/2) +15]cos(t/2) +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询