高数,不定积分中第二类积分换元法,如图,为什么dx=2tdt

 我来答
个别人搞定b4
推荐于2019-09-16 · TA获得超过3411个赞
知道小有建树答主
回答量:9281
采纳率:0%
帮助的人:1224万
展开全部
3.利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式 x = φ(t).两边对自变量微分得dx=φ’(t)dt.
此方法主要是求无理函数(带有根号的函数)的不定积分.由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分.
下面我简单介绍第二类换元法中常用的方法:
(1)根式代换:被积函数中带有根式√(ax+b),可直接令 t =√(ax+b);
(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:
被积函数含根式√(a^2-x^2),令 x = asint
被积函数含根式√(a^2+x^2),令 x = atant
被积函数含根式√(x^2-a^2),令 x = asect
注:记住三角形示意图可为变量还原提供方便.
还有几种代换形式:
(3)倒代换(即令 x = 1/t):设m,n 分别为被积函数的分子、分母关于x 的最高次数,当 n-m>1时,用倒代换可望成功;
(4)指数代换:适用于被积函数由指数 a^x 所构成的代数式
(5)万能代换(半角代换):被积函数是三角函数有理式,可令 t = tan(x/2)
月之云
2019-11-15
知道答主
回答量:1
采纳率:0%
帮助的人:676
展开全部
因为求微分啊。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式