求瑕积分∫dx/ (√x(x+1)) ,[0,1] 20
1个回答
展开全部
∫[0--->1] √[x/(1-x)] dx
这是一个瑕积分,根据瑕积分的定义
=lim [ε--->0+] ∫[0--->1-ε] √[x/(1-x)] dx
令x/(1-x)=t²,则x=t²/(1+t²),dx=2t/(1+t²)²dt,t:0---->√(1/ε-1)
=lim [ε--->0+] ∫[0---->√(1/ε-1)] t*2t/(1+t²)²dt
=lim [ε--->0+] ∫[0---->√(1/ε-1)] 2t²/(1+t²)²dt
这是一个瑕积分,根据瑕积分的定义
=lim [ε--->0+] ∫[0--->1-ε] √[x/(1-x)] dx
令x/(1-x)=t²,则x=t²/(1+t²),dx=2t/(1+t²)²dt,t:0---->√(1/ε-1)
=lim [ε--->0+] ∫[0---->√(1/ε-1)] t*2t/(1+t²)²dt
=lim [ε--->0+] ∫[0---->√(1/ε-1)] 2t²/(1+t²)²dt
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询