实际上是可以采用中值定理的,只不过推导过程麻烦一点:
用中值定理得出的解应该为:
lim∫(0→1)[(x^n)/(1+x)]dx=lim(1-0)*[(ξn^n)/(1+ξn)]
因为ξn具体取什么值是由n决定的,所以分数上下的ξ值都应该写作ξn,如果要证明
lim(1-0)*[(ξn^n)/(1+ξn)]=0,则需要证明在取n趋向于无穷大的任意一个n时,这个以n为变量的ξn都不包括1(因为ξn的区间是[0,1])。
扩展资料
求极限基本方法有:
1.直接代入法
对于初等函数f(x)的极限f(x),若f(x)在x点处的函数值f(x)存在,则f(x)=f(x)。直接代入法的本质就是只要将x=x代入函数表达式,若有意义,其极限就是该函数值。
2.无穷大与无穷小的转换法
在相同的变化过程中,若变量不取零值,则变量为无穷大量?圳它的倒数为无穷小量。对于某些特殊极限可运用无穷大与无穷小的互为倒数关系解决。
(1)当分母的极限是“0”,而分子的极限不是“0”时,不能直接用极限的商的运算法则,而应利用无穷大与无穷小的互为倒数的关系,先求其的极限,从而得出f(x)的极限。
(2)当分母的极限为∞,分子是常量时,则f(x)极限为0。
3.除以适当无穷大法
对于极限是“”型,不能直接用极限的商的运算法则,必须先将分母和分子同时除以一个适当的无穷大量x。
用中值定理得出的解应该为:
lim∫(0→1)[(x^n)/(1+x)]dx=lim(1-0)*[(ξn^n)/(1+ξn)]
因为ξn具体取什么值是由n决定的,所以分数上下的ξ值都应该写作ξn,如果要证明
lim(1-0)*[(ξn^n)/(1+ξn)]=0,则需要证明在取n趋向于无穷大的任意一个n时,这个以n为变量的ξn都不包括1(因为ξn的区间是[0,1])。
要证明这个也不难:
只要证明(x^n)/(1+x)在n大于任意一个数时,x∈[0,1],为单调递增或递减函数就可以了,因为如果函数单增或单减,则ξn必在(0,1)之间,不可能取到1。
(x^n)/(1+x) 求导得:
((x^n)/(1+x))'=(n*x^(n-1)*(1+x)-x^n)/(1+x)^2=(n*x^(n-1)+(n-1)*x^n)/(1+x)^2,用肉眼可以看出n>1,x∈[0,1],时导数都是大于0的,因此ξn取不到1。
广告 您可能关注的内容 |